Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[bis(acetonitrile- κN)di- μ-thio-cyanato- $\kappa^{2} N, S ; \kappa^{2} S, N-$ nickel(II)]

Susanne Wöhlert,* Inke Jess and Christian Näther

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-
Strasse 2, 24098 Kiel, Germany
Correspondence e-mail: swoehlert@ac.uni-kiel.de

Received 25 January 2011; accepted 2 February 2011

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.027 ; w R$ factor $=0.051$; data-to-parameter ratio $=22.5$.

In the title compound, $\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{2}\right]_{n}$, the $\mathrm{Ni}^{\mathrm{II}}$ cation is coordinated by two N -bonded and two S -bonded thiocyanate anions, as well as two acetonitrile molecules in an octahedral $\mathrm{NiN}_{4} \mathrm{~S}_{2}$ coordination mode. The asymmetric unit comprises one nickel cation, two thiocyanate anions and two actonitrile molecules. In the crystal, the $\mathrm{Ni}^{\mathrm{II}}$ cations are connected by bridging thiocyanate anions into a threedimensional coordination network.

Related literature

For background of this work see: Boeckmann \& Näther (2010); Wriedt et al. (2009a,b).

Experimental

Crystal data
$\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]$
$M_{r}=256.98$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=9.0666$ (4) \AA
$b=9.1215$ (3) \AA
$c=12.0696$ (6) \AA

Data collection

Stoe IPDS-2 diffractometer
Absorption correction: numerical
(X-SHAPE and X-RED32;
Stoe \& Cie, 2008)
$T_{\text {min }}=0.683, T_{\text {max }}=0.772$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.051$
$S=1.29$
2694 reflections
120 parameters
H -atom parameters constrained
$V=998.17$ (7) \AA^{3}
$Z=4$
Mo $K \alpha$ radiation
$\mu=2.32 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.11 \times 0.09 \times 0.06 \mathrm{~mm}$

11157 measured reflections
2694 independent reflections 2479 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\Delta \rho_{\text {max }}=0.29 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.28$ e \AA^{-3}
Absolute structure: Flack (1983),
1141 Friedel pairs
Flack parameter: -0.003 (13)

Data collection: $X-A R E A$ (Stoe \& Cie, 2008); cell refinement: X $A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: XCIF in SHELXTL.

We gratefully acknowledge financial support by the DFG (project No. NA 720/3-1) and the State of Schleswig-Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2264).

References

Boeckmann, J. \& Näther, C. (2010). Dalton Trans. pp. 11019-11026.
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe \& Cie, Darmstadt, Germany.
Wriedt, M., Jess, J. \& Näther, C. (2009b). Eur. J. Inorg. Chem. pp. 1406-1413.
Wriedt, M., Sellmer, S. \& Näther, C. (2009a). Dalton Trans. pp. 7975-7984.

supplementary materials

```
Acta Cryst. (2011). E67, m309 [ doi:10.1107/S1600536811004132]
```


Poly[bis(acetonitrile- κN)di- μ-thiocyanato- $\kappa^{2} N, S ; \kappa^{2} S, N$-nickel(II)]

S. Wöhlert, I. Jess and C. Näther

Comment

In recent work, we have shown that thermal decomposition reactions are an elegant route for discovering and synthesising new ligand-deficient coordination polymers with attractive magnetic properties (Boeckmann \& Näther, 2010; Wriedt et al., $2009 a, 2009 b$). In our investigation on the syntheses, structures and properties of such compounds based on paramagnetic transition metals, pseudo-halides and N-donor ligands, we have reacted nickel(II) thiocyanate and trans-1,2-bis(4-pyridyl)ethylene in acteonitrile. In this reaction single crystals of the title compound were obtained accidentally in a mixture with an unknown phase. To identify the reaction product the compound was investigated by single crystal X-ray diffraction.

In the crystal structure of the title compound, each nickel(II) cation is coordinated by four bridging thiocyanato anions and by two acetonitrile molecules (Fig. 1). The $\mathrm{NiN}_{4} \mathrm{~S}_{2}$ octahedron is slightly distorted with two long $\mathrm{Ni}-\mathrm{SCN}$ distances of 2.5305 (6) \AA and 2.5341 (6) \AA as well as two short Ni—NCS distances of 2.021 (2) \AA and 2.023 (2) \AA. The angles around the metal atom range from $87.88(6)^{\circ}$ to $93.23(6)^{\circ}$ and $178^{\circ}($ Tab. 1).

The nickel cations are linked by the thiocyanato anions into chains, that are further connected into a three-dimensional network (Fig. 2). The shortest intramolecular $\mathrm{Ni} \cdots \mathrm{Ni}$ distance amounts to 5.7052 (4) \AA and the shortest intermolecular $\mathrm{Ni} \cdots \mathrm{Ni}$ distance amounts to 9.0666 (4) \AA.

Experimental

$\mathrm{Ni}(\mathrm{NCS})_{2}$ was obtained from Alfa Aesar and trans-1,2-bis(4-pyridyl)-ethylene (bpe) was obtained from Sigma Aldrich. All chemicals were used without further purification. $0.6 \mathrm{mmol}(104.7 \mathrm{mg}) \mathrm{Ni}(\mathrm{NCS})_{2}$ and $0.15 \mathrm{mmol}(28.2 \mathrm{mg})$ bpe were reacted with 1 ml acetonitrile in a closed test-tube at $120^{\circ} \mathrm{C}$ for three days. On cooling blue block-shaped single crystals of the title compound were obtained in a mixture with a unknown phase. It must be noted, that the reaction without bpe does not lead to the formation of the title compound.

Refinement

H atoms were positioned with idealized geometry, allowed to rotate but not to tip and were refined isotropically with $U_{\text {iso }}(\mathrm{H})$ $=1.5 U_{\mathrm{eq}}(\mathrm{C})$ and $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ using a riding model. The absolute structure was determined on the basis of 1127 Friedel pairs.

supplementary materials

Figures

Fig. 1. Crystal structure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: $i=x-1 / 2,-y+3 / 2,-z+1 ; i i=-x, y-1 / 2,-$ $z+3 / 2$.

Fig. 2. Crystal structure of the title compound approximately viewed along the crystallographic b-axis.

Poly[bis(acetonitrile- κN)di- μ-thiocyanato- $\kappa^{2} N, S ; \kappa^{2} S, N$-nickel(II)]

Crystal data

$\left[\mathrm{Ni}(\mathrm{NCS})_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{2}\right]$
$M_{r}=256.98$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=9.0666$ (4) \AA
$b=9.1215$ (3) \AA
$c=12.0696(6) \AA$
$V=998.17(7) \AA^{3}$
$Z=4$
$F(000)=520$
$D_{\mathrm{x}}=1.710 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 11157 reflections
$\theta=2.8-29.2^{\circ}$
$\mu=2.32 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, blue
$0.11 \times 0.09 \times 0.06 \mathrm{~mm}$

Data collection

Stoe IPDS-2
diffractometer
Radiation source: fine-focus sealed tube
graphite
ω scans
Absorption correction: numerical (X-SHAPE and X-RED32; Stoe \& Cie, 2008)
$T_{\text {min }}=0.683, T_{\text {max }}=0.772$
11157 measured reflections

2694 independent reflections
2479 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=29.2^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-12 \rightarrow 10$
$k=-12 \rightarrow 12$
$l=-16 \rightarrow 16$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.027$
$w R\left(F^{2}\right)=0.051$
$S=1.29$
2694 reflections
120 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0221 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}
Absolute structure: Flack (1983), $\mathbf{1 1 2 7}$ Friedel pairs
Flack parameter: -0.003 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Ni1	$-0.10172(3)$	$0.83322(3)$	$0.62898(2)$	$0.02615(6)$
N1	$-0.0070(2)$	$1.0335(2)$	$0.63730(18)$	$0.0388(4)$
C1	$0.0391(2)$	$1.1504(3)$	$0.64845(15)$	$0.0307(4)$
S1	$0.10459(8)$	$1.31745(6)$	$0.66142(4)$	$0.03781(12)$
N2	$0.0983(2)$	$0.7362(2)$	$0.61691(15)$	$0.0356(4)$
C2	$0.2172(2)$	$0.6972(2)$	$0.60194(15)$	$0.0283(4)$
S2	$0.38867(6)$	$0.64753(7)$	$0.58006(4)$	$0.03776(13)$
N3	$-0.2036(2)$	$0.6293(2)$	$0.62176(17)$	$0.0341(4)$
C3	$-0.2491(2)$	$0.5139(3)$	$0.6242(2)$	$0.0335(4)$
C4	$-0.3109(3)$	$0.3669(3)$	$0.6278(3)$	$0.0468(6)$
H4A	-0.4134	0.3723	0.6472	0.070^{*}
H4B	-0.2593	0.3098	0.6823	0.070^{*}
H4C	-0.3007	0.3215	0.5565	0.070^{*}
N4	$-0.3065(2)$	$0.9326(2)$	$0.63801(17)$	$0.0365(4)$
C5	$-0.4170(2)$	$0.9893(2)$	$0.63197(19)$	$0.0344(4)$
C6	$-0.5579(3)$	$1.0633(3)$	$0.6230(3)$	$0.0452(5)$
H6A	-0.5743	1.1215	0.6881	0.068^{*}

H6B	-0.6351	0.9920	0.6161	0.068*		
H6C	-0.5575	1.1256	0.5589	0.068*		
Atomic displacement parameters (A^{2})						
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.02348 (10)	0.02426 (11)	0.03072 (11)	-0.00044 (11)	-0.00046 (11)	-0.00142 (9)
N1	0.0458 (11)	0.0336 (10)	0.0371 (9)	-0.0091 (8)	-0.0039 (10)	-0.0018 (9)
C1	0.0340 (9)	0.0322 (11)	0.0258 (9)	-0.0008 (9)	-0.0008 (7)	0.0003 (8)
S1	0.0523 (3)	0.0278 (3)	0.0333 (2)	-0.0104 (3)	-0.0001 (2)	0.00087 (19)
N2	0.0288 (7)	0.0434 (9)	0.0346 (9)	0.0041 (9)	0.0021 (10)	-0.0025 (7)
C2	0.0318 (9)	0.0280 (10)	0.0252 (8)	-0.0010 (8)	-0.0010 (7)	-0.0013 (7)
S2	0.0262 (2)	0.0527 (3)	0.0343 (2)	0.0089 (3)	0.0010 (2)	0.0033 (2)
N3	0.0339 (8)	0.0314 (10)	0.0369 (9)	-0.0033 (7)	0.0016 (9)	-0.0011 (9)
C3	0.0351 (9)	0.0332 (11)	0.0322 (9)	-0.0013 (8)	-0.0007 (9)	0.0025 (9)
C4	0.0585 (15)	0.0327 (12)	0.0492 (13)	-0.0105 (11)	-0.0028 (14)	-0.0001 (12)
N4	0.0334 (9)	0.0379 (10)	0.0382 (9)	0.0053 (8)	-0.0016 (9)	-0.0003 (9)
C5	0.0333 (10)	0.0368 (10)	0.0332 (9)	-0.0002 (9)	0.0007 (10)	-0.0034 (9)
C6	0.0326 (10)	0.0485 (13)	0.0547 (14)	0.0061 (10)	0.0018 (12)	-0.0008 (13)

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Ni1—N1	$2.0210(19)$
Ni1—N2	$2.0231(18)$
Ni1—N4	$2.0685(19)$
Ni1—N3	$2.0782(18)$
Ni1—S2 ${ }^{\mathrm{i}}$	$2.5305(6)$
Ni1—S1 ${ }^{\text {ii }}$	$2.5341(6)$
N1—C1	$1.154(3)$
C1—S1	$1.643(2)$
S1—Ni1ii	$2.5341(6)$
N2—C2	$1.149(3)$
C2—S2	$1.641(2)$
N1—Ni1—N2	$91.02(8)$
N1—Ni1—N4	$89.02(8)$
N2—Ni1—N4	$178.89(9)$
N1—Ni1—N3	$178.69(9)$
N2—Ni1—N3	$90.23(8)$
N4—Ni1—N3	$89.73(8)$
N1—Ni1—S2	$90.09(6)$
N2—Ni1—S2	$89.40(5)$
N4—Ni1—S2	$89.50(6)$
N3—Ni1—S2	$90.29(6)$
N1—Ni1—S1	$90.35(6)$
N2—Ni1—S1	$93.23(6)$
N4—Ni1—S1ii	$87.88(6)$

S2-Ni $1^{\text {iv }}$	$2.5305(6)$
N3-C3	$1.131(3)$
C3-C4	$1.454(3)$
C4-H4A	0.9600
C4-H4B	0.9600
C4-H4C	0.9600
N4-C5	$1.130(3)$
C5-C6	$1.449(3)$
C6-H6A	0.9600
C6-H6B	0.9600
C6-H6C	0.9600
N2-C2-S2	$178.0(2)$
C2-S2-Ni1	$100.02(7)$
C3-N3-Ni1	$173.7(2)$
N3-C3-C4	$178.7(3)$
C3-C4-H4A	109.5
C3-C4-H4B	109.5
H4A-C4-H4B	109.5
C3-C4-H4C	109.5
H4A-C4-H4C	109.5
H4B-C4-H4C	109.5
C5-N4-Ni1	$173.2(2)$
N4-C5-C6	$179.2(3)$
C5-C6-H6A	109.5

sup-4

supplementary materials

N3-Nil-S1 ${ }^{\text {ii }}$	89.22 (6)	C5-C6-H6B	109.5
S2 ${ }^{\text {i }}-\mathrm{Ni} 1-\mathrm{S} 1^{\text {ii }}$	177.34 (2)	H6A-C6-H6B	109.5
C1-N1-Ni1	174.6 (2)	C5-C6-H6C	109.5
N1-C1-S1	178.77 (19)	H6A-C6-H6C	109.5
$\mathrm{C} 1-\mathrm{S} 1-\mathrm{Ni} 1^{\mathrm{iii}}$	98.29 (7)	H6B-C6-H6C	109.5
C2-N2-Ni1	170.90 (18)		

Fig. 1

Fig. 2

